
Задача по теории графов с решением Алгоритм Флойда

ЗАДАНИЕ.

Найти все кратчайшие пути в орграфе, используя алгоритм Флойда.

Решение.

Шаг 0. Строим матрицу $D_0 = C$ (матрица кратчайших путей между вершинами без промежуточных вершин).

$$D_0 = C = \begin{pmatrix} 0 & 28 & 21 & 59 & 12 & 27 \\ 7 & 0 & 24 & \infty & 21 & 9 \\ 9 & 32 & 0 & 13 & 11 & \infty \\ 8 & \infty & 5 & 0 & 16 & \infty \\ 14 & 13 & 15 & 10 & 0 & 22 \\ 15 & 18 & \infty & \infty & 6 & 0 \end{pmatrix}$$

Строим также матрицу последовательности вершин:

$$S_0 = \begin{pmatrix} 0 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 3 & 4 & 5 & 6 \\ 1 & 2 & 0 & 4 & 5 & 6 \\ 1 & 2 & 3 & 0 & 5 & 6 \\ 1 & 2 & 3 & 4 & 0 & 6 \\ 1 & 2 & 3 & 4 & 5 & 0 \end{pmatrix}$$

Делаем далее шаги, пересчитывая элементы матрицы по формуле $d_{ij}^{(m)} = \min\left\{d_{ij}^{(m-1)}, d_{im}^{(m-1)} + d_{mj}^{(m-1)}\right\}$ и $s_{ij}^{(m)} = m$.

1

Когда m является одной из концевых вершин, формулы упрощаются: $d_{im}^{(m)}=d_{im}^{(m-1)},\ d_{mj}^{(m)}=d_{mj}^{(m-1)}$, то есть m -я строка и m -й столбец не изменяются при переходе от матрицы $D^{(m-1)}$ к матрице $D^{(m)}$. Кроме того, будем иметь в виду, что если $d_{im}^{(m-1)}=\infty$, то $d_{ij}^{(m)}=d_{ij}^{(m-1)}$ для всех j и если $d_{mj}^{(m-1)}=\infty$, то $d_{ij}^{(m)}=d_{ij}^{(m-1)}$ для всех i.

То есть, если элемент i выделенного (не подлежащего изменению) столбца равен ∞ , то все элементы i строки на текущей итерации не изменятся (и аналогично для j).

Производим расчеты.

Шаг 1. m = 1, разрешающая строка и столбец выделены серым.

0	28	21	59	12	27
7	0	24	8	21	9
9	32	0	13	11	8
8	8	5	0	16	8
14	13	15	10	0	22
15	18	8	∞	6	0

Матрица $D^{(1)}$

0	28	21	59	12	27
7	0	24	66	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	74	6	0

Матрица $S^{(1)}$

0	2	3	4	5	6
1	0	3	1	1	6
1	2	0	4	5	1
1	1	3	0	5	1
1	2	3	4	0	6
1	2	1	1	5	0

Шаг 2. m=2, разрешающая строка и столбец выделены серым.

0	28	21	59	12	27
7	0	24	66	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	74	6	0

Матрица $D^{(2)}$

	0	28	21	59	12	27
	7	0	24	66	19	9
	9	32	0	13	11	36
	8	36	5	0	16	35
	14	13	15	10	0	22
ĺ	15	18	36	74	6	0

Матрица $S^{(2)}$

0	2	3	4	5	6
1	0	3	1	1	6
1	2	0	4	5	1
1	1	3	0	5	1
1	2	3	4	0	6
1	2	1	1	5	0

Шаг 3. m = 3, разрешающая строка и столбец выделены серым.

0	28	21	59	12	27
7	0	24	66	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	74	6	0

Матрица $D^{(3)}$

0	28	21	34	12	27
7	0	24	37	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	49	6	0

Матрица $S^{(3)}$

0	2	3	3	5	6
1	0	3	3	1	6
1	2	0	4	5	1
1	1	3	0	5	1
1	2	3	4	0	6
1	2	1	3	5	0

Шаг 4. m = 4, разрешающая строка и столбец выделены серым.

0	28	21	34	12	27
7	0	24	37	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	49	6	0

Матрица $D^{\scriptscriptstyle (4)}$

0	28	21	34	12	27
7	0	24	37	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	49	6	0

Матрица $S^{(4)}$

0	2	3	3	5	6
1	0	3	3	1	6
1	2	0	4	5	1
1	1	3	0	5	1
1	2	3	4	0	6
1	2	1	3	5	0

Шаг 5. m = 5, разрешающая строка и столбец выделены серым.

0	28	21	34	12	27
7	0	24	37	19	9
9	32	0	13	11	36
8	36	5	0	16	35
14	13	15	10	0	22
15	18	36	49	6	0

Матрица $D^{\scriptscriptstyle (5)}$

0	25	21	22	12	27
7	0	24	29	19	9
9	24	0	13	11	33
8	29	5	0	16	35
14	13	15	10	0	22
15	18	21	16	6	0

Матрица $S^{(5)}$

0	5	3	5	5	6
1	0	3	5	1	6
1	5	0	4	5	5
1	5	3	0	5	1
1	2	3	4	0	6
1	2	5	5	5	0

Шаг 6. m = 6, разрешающая строка и столбец выделены серым.

0	25	21	22	12	27
7	0	24	29	19	9
9	24	0	13	11	33
8	29	5	0	16	35

14	13	15	10	0	22
15	18	21	16	6	0

Матрица $D^{(6)}$

0	25	21	22	12	27
7	0	24	25	15	9
9	24	0	13	11	33
8	29	5	0	16	35
14	13	15	10	0	22
15	18	21	16	6	0

Матрица $S^{(6)}$

0	5	3	5	5	6
1	0	3	6	6	6
1	5	0	4	5	5
1	5	3	0	5	1
1	2	3	4	0	6
1	2	5	5	5	0

Расчеты окончены. Получили матрицы:

Матрица $D^{(6)}$ - расстояние между вершинами i и j равно элементу этой матрицы d_{ij} .

0	25	21	22	12	27
7	0	24	25	15	9
9	24	0	13	11	33
8	29	5	0	16	35
14	13	15	10	0	22
15	18	21	16	6	0

Матрица $S^{(6)}$ - по ней определяются промежуточные вершины на пути от вершины i к вершине j .

0	5	3	5	5	6
1	0	3	6	6	6
1	5	0	4	5	5
1	5	3	0	5	1
1	2	3	4	0	6
1	2	5	5	5	0